Sei in: Home > Storico dei corsi di insegnamento > Analisi Matematica
 
 

Analisi Matematica

 

Mathematical Analysis

 

Anno accademico 2014/2015

Codice dell'attività didattica
MFN0702
Docenti
Prof. Vivina Laura Barutello (Titolare del corso)
Prof. Marco Cappiello (Titolare del corso)
Corso di studi
[f008-c315] laurea i^ liv. in ottica e optometria - a torino
Anno
1° anno
Tipologia
Di base
Crediti/Valenza
8
SSD dell'attività didattica
MAT/05 - analisi matematica
Modalità di erogazione
Tradizionale
Lingua di insegnamento
Italiano
Modalità di frequenza
Facoltativa
Tipologia d'esame
Scritto ed orale
Prerequisiti
Conoscenze algebriche di base, equazioni e disequazioni algebriche,esponenziali e logaritmi, geometria analitica di base, trigonometria.
 
 

Obiettivi formativi

L'obiettivo del corso è presentare i principali argomenti dell'analisi matematica di base, illustrarne le applicazioni e dare delle metodologie per la risoluzione di problemi ed esercizi.

 

Risultati dell'apprendimento attesi

Alla fine del corso gli studenti conosceranno i principali risultati dell'analisi in termini di definizioni ed enunciati di teoremi e saper applicare tali risultati alla risoluzione di problemi ed esercizi, sapranno operare con funzioni elementari, funzioni composte e funzioni inverse.
Sapranno inoltre tracciare il grafico qualitativo di una funzione e risolvere alcune classi di equazioni differenziali.

 

Modalità di verifica dell'apprendimento

Per superare l'esame gli studenti sono tenuti a sostenere una prova scritta e un colloquio orale. All'orale sono ammessi coloro che hanno ottenuto una valutazione sufficiente nello scritto. L'orale deve essere sostenuto nella stessa sessione della prova scritta. Alla prova scritta non è permesso portare formulari, calcolatrici o alti dispositivi elettronici. La prova scritta può essere sostenuta suddivisa in due esoneri parziali; il primo in itinere durante il corso, il secondo in concomitanza con il primo appello scritto. Il risultato delle due prove verrà pubblicato insieme a quelli del primo scritto.

 

Programma

  • Italiano
  • English

1. Indice generale degli argomenti

Funzioni reali di variabile reale: definizioni di base, grafico delle funzioni
elementari, trasformazioni di funzioni, funzioni composte e inverse.
Limiti e continuità delle funzioni. Funzioni continue su un intervallo.
Derivate: definizioni, calcolo, teoremi e applicazioni. Approssimazioni lineri. Studio del grafico qualitativo delle funzioni. 

Primitive di una funzione, integrali indefiniti.
Integrali definiti, Teorema fondamentale del calcolo integrale.
Equazioni differenziali del primo ordine a variabili separabili e lineari.
Equazioni differenziali del secondo ordine lineari a coefficienti costanti.

2. Programma dettagliato

La numerazione delle pagine che compare nel programma si riferisce al libro di testo.

1) Funzioni.  Definizioni di base, Test delle Rette Verticali, funzioni definite a tratti, valore assoluto, simmetrie, monotonia (Cap. 1.1, pp. 11-21).  Funzioni elementari e loro trasformazioni: potenze, funzioni razionali, algebriche e trigonometriche  (Cap. 1.2, pp. 30-34). Traslazioni, dilatazioni e riflessioni. Operazioni algebriche tra funzioni; composizione di funzioni  (Cap. 1.3, pp. 38-46).  Funzioni esponenziali (Cap. 1.5, pp. 56-62). Funzioni inverse e logaritmi (Cap. 1.6, pp. 64-72).

Esercizi consigliati ( "*" = esercizi da svolgere durante il tutorato del 30/09 o del 07/10)

2*, 13, 14, 16*, 20, 22, 28*, 30*, 32*, 35, 38*, 39*, 41, 48, 55*-60*;  pp. 22-24.

1, 3*, 6,* 7*, dal 10*al 24* esercizi pari, 31*,32,33,34*, 37*, 38, 40*, 42*, 44-49, 58* pp. 46-49.  10*, 12*, 18* pp. 63-64. 7-11, 19*, 27*, 28, 29, 36, 38*, 48, 50*, 52b pp.73-75.

Riepilogo (tranne il 13) pp.84. Esercizi dall'1 al 28 pp.85-86. Problemi 6*, 7*, 8*, 10* pp.93.

2) Limiti e continuità. Limite di una funzione (Cap. 2.2, pp.100-108). Calcolo dei limiti (Cap. 2.3, pp.110-117). Continuità (Cap. 2.4, pp. 119-128). Limiti infiniti e limiti all'infinito (Cap. 2.5, pp.130-139).

Esercizi consigliati ( "*" = esercizi da svolgere durante il tutorato del 14/10)

1*, 2*,8*, 17*, 19, 26, 31*,32, 34*;  pp. 117-119. 11, 13*, 14*, 15*,  16*, 36*, 37, 39(a)* pp. 128-130.   3, 8*, 16*, 22, 26*, 28*, 35 pp.139-142.

3) Derivate. Tangenti, velocità e rapporto incrementale (Cap. 2.6, pp. 142-147).  Definizione di derivata e di rapporto incrementale (Cap. 2.7, pp. 150-153). La funzione derivata: derivabilità e continuità, funzioni derivabili in un intervallo, punti in cui una funzione non è derivabile,  derivata seconda (Cap. 2.8, pp. 157-167). Informazioni su f fornite da f' e da f'' (Cap. 2.9, pp. 175-177). 

Esercizi consigliati ( "*" = esercizi da svolgere durante il tutorato del 21/10)

3, 13*, 15; pp. 148. 6*, 8*, 16*, 20*, 24;  pp. 155. 4*, 5*, 7*, 9*, 20, 23, 25, 31*, 32*, 36*; pp. 167. 1, 2*, 3, 4*, 16*, 18*, 20*, 21, 22*, 23, 24*; pp. 178-180.  1-43, pp.182-184.

4) Regole di derivazione. Derivate di polinomi e funzioni esponenziali, derivata del prodotto e del quoziente, Derivate delle funzioni trigonometriche (Cap. 3.1, 3.2, 3.4). Derivazione della funzione composta (Cap. 3.5, pp. 225-230). Derivazione implicita, derivata delle funzioni trigonometriche inverse (Cap. 3.6 - tutto tranne Traiettorie otogonali). Derivate delle funzioni logaritmiche  (Cap. 3.7, pp. 245-249). Approssimazioni lineari e differenziali (Cap. 2.9, pp.171-173 e Cap. 3.8, pp. 252-254, Differenziali esclusi, Polimoni di Taylor a p. 257).

Esercizi consigliati ( "*" = esercizi da svolgere durante il tutorato del 21/10 fino a pagina 234. I restanti contrassegnati durante il tutorato del 31/10)

3-22, 34*, 40* pp. 196-197. 4*, 6, 8*, 12, 14*, 16, 32* pp. 204-205. 2*, 8* pp. 223. 1-31 (dispari, farne a scelta al tutorato), 42*, 46*, 49*, 55* pp. 233-234. 3*, 9*, 27*, 31 pp. 243-244. 4*, 8*, 13, 14*, 21, 34*, 36 pp. 250-1.  1*, 3*, 14a, 16*, pp. 256. Tutti* gli esercizi di riepilogo alle pp.259-260 (fino al 56). 

 5) Applicazioni del calcolo differenziale. Massimi e minimi di una funzione, teorema di Weierstrass, teorema di Fermat, teorema di Lagrange, Test di monotonia. Studio della concavità di una funzione (Cap. 4.2 e 4.3). Forme indeterminate e Regola di de l'Hopital  (Cap. 4.5).

Esercizi consigliati ( "*" = esercizi da svolgere durante il tutorato del 31/10 o del 7/11)

4*, 6, 12*, 18, 21*, 28, 32, 36, 40, 56* pp. 276-9. 8*, 20*, 23*, 30* pp. 289-90. Tutti gli esercizi pari non svolti in classe a pp. 305-6. 1*-12*, 24*-32*, 41*-45* pp.337-338.

6) Integrali. Definizione di primitiva e di integrale indefinito. Il problema dell'area.
Somme di Riemann e integrale definito di una funzione. Teorema di valutazione. Funzioni integrali e loro proprietà. Teorema fondamentale del calcolo integrale. 

Esercizi consigliati: ( "*" = esercizi da svolgere durante il tutorato del 26/11)

3, 5, 7, 8, 20, 24, 25*, 26, 49, 50, 51 pp. 334-338, 20, 23*, 24, 26*, 34*, 41, 42, 45, 47* pp. 376-377, 13, 16*, 17*, 18, 25* pp. 386-387.

 Regole di calcolo per gli integrali: la regola di sostituzione. La formula di integrazione per parti. Alcuni integrali di funzioni trigonometriche. Decomposizione di funzioni razionali in frazioni parziali ed integrazione delle funzioni razionali.

Esercizi consigliati ( "*" = esercizi da svolgere durante il tutorato del 3/12)

3,5,8,9*,11,16,18,21,32*39,45*,46* pp. 395, 7,9*,12*21*, 25* pp.401,  15,16,17,18*,19 pp. 408.

Calcolo di aree di regioni piane comprese tra grafici di funzioni. Integrali impropri su intervalli illimitati, definizione ed esempi.

Esercizi consigliati ( "*" = esercizi da svolgere durante il tutorato del 10/12)

20, 21,24*, 26,28*,29,31 pp. 408, 1,2,5,6,8,10*,15*,16* pp. 452

Integrali impropri su intervalli limitati, definizione ed esempi. Teorema del confronto per gli integrali improri.

Esercizi consigliati 

10, 14, 16, 21, 14, 31, 35, 38, 43, 44, 47, 61 pp. 436-437, 13, 17, 18, 22, 25, 26, 29, 31, 56, 59.

 


 

Testi consigliati e bibliografia

Calcolo. Funzioni di una variabile.

Autore: James Stewart
Casa editrice: Apogeo
ISBN: 9788873037477

 
Ultimo aggiornamento: 29/04/2015 09:05
Campusnet Unito
Non cliccare qui!